五个阶段四个维度,一文讲透企业数字化转型

九十年代最成功的企业将会是“学习型组织”,因为未来唯一持久的优势,是有能力比你的竞争对手学习得更快。

——彼得·圣吉《第五项修炼》

在笔者看来,作为制造企业的愿景和目标,智能制造的本质不只在于企业的产品或服务的竞争力(企业之),更在于企业作为一个系统的生态存活能力(企业之),即企业适应环境和市场变化的能力。在智能制造时代,企业要能够敏捷执行和实时变化,要能够自学习和自适应。学习型组织是彼得·圣吉对优秀企业的要求,不过他主要指的是企业中的人、组织结构和企业文化;智能制造则把自学习、自适应的能力要求扩充到企业的整个系统,包括人、组织、文化、技术、流程、资源、设备、工具,等等。具体来说,就是运营技术(OperationTechnologyOT)、信息技术(InformationTechnologyIT)、通讯技术(CommunicationTechnologyCT)、人和组织等四者的融合,以及融合之后的自学习和自适应。

1)进化阶段和路径

企业系统从无知、混沌的状态到自学习、自适应的状态,是从无序到有序,从懵懂到明智的进化过程。从企业数字化转型和智能制造建设的角度来看,这个过程大体可以分为五个阶段:互联化、可视化、透明化、可预测和自适应,这也可作为企业智能制造的建设路径。

智能制造的进化阶段和路径

1:智能制造的进化阶段和路径

在互联化阶段,企业系统的各个要素及运行都可用数字来表达。在信息化时代,业务的数字化显现主要通过手工录入来完成,在数据的准确性、完整性、及时性方面都有一定的缺陷。面向智能制造时代,通过物联网和人工智能(图像识别、语音识别等)等技术的应用,理论上讲,业务的数字化显现工作可以自动完成,数据在准确性、完整性和及时性等方面有了指数级提高。

在可视化阶段,企业系统的数字化显现被赋予了业务意义。在信息化时代,业务的可视化主要以交易或记录为中心,以统计学技术来表示业务运营的特征,比如总量、最大、最小、平均、中位数、环比、同比、TOPN,等等。面向智能制造时代,随着云计算技术的发展,企业更注重业务发展轨迹的变化,数字主线和数字孪生成为了业务可视化的新型展现方式,并使业务远程管理等业务场景成为可能。

在透明化阶段,关注的是企业系统各要素之间的关系,以及企业业务运营和变化的背后,因果关系的寻求。在信息化时代,企业能够得到的主要是业务变化的“How”。面向智能制造时代,随着数据数量和质量的大大提高,以及高级分析技术的发展,企业更关注业务变化的“Why”。有了对企业系统中因果关系的清晰认识,就可以做制造运营的仿真和优化,从而实现精益制造。

在可预测阶段,关注的是业务运营的未来变化,以便于企业提前做好应对。在信息化时代,企业对业务变化的预测主要是通过统计学方法来实现的,比如SPC(统计过程控制技术)在制造管理中的应用,其在适用范围和准确性等方面还有很大的局限。面向智能制造时代,随着机器学习等技术的发展,可供应用的预测技术更加多元化,线性回归、神经网络、决策树、支持向量机等技术在制造业都可以找到其适用场景。

在自适应阶段,企业系统的运营已经实现了高度自主。作为智能制造的高级阶段,企业系统可以根据环境的变化做出实时调整,并根据应对措施的效果反馈进行自学习和算法优化。在自适应阶段,智能制造的表象就是少人化,甚至零人工干预,并实现柔性制造和自主制造。

2)组织范围和能力要求

根据企业系统智能化的五阶段划分,对于不同的系统要素,其所处的阶段是不同的。为了对系统要素的智能化程度有个更具体的认识,以便于后续的改进优化,本文从四个维度、九大视角来对组织范围和能力要求进行划分,即资源维度,包括资源的数字化映射和结构化沟通;技术维度,包括数据处理和信息集成;流程维度,包括纵向的执行链,端到端的产品链和资产链,横向的价值链;文化维度,包括变革的意愿和社会化协作。

组织范围和能力要求

2:组织范围和能力要求